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Human colorectal cancers (CRCs) contain both clonal and subclonal
mutations. Clonal driver mutations are positively selected, present
in most cells, and drive malignant progression. Subclonal muta-
tions are randomly dispersed throughout the genome, providing a
vast reservoir of mutant cells that can expand, repopulate the
tumor, and result in the rapid emergence of resistance, as well as
being a major contributor to tumor heterogeneity. Here, we apply
duplex sequencing (DS) methodology to quantify subclonal muta-
tions in CRC tumor with unprecedented depth (104) and accuracy
(<10−7). We measured mutation frequencies in genes encoding
replicative DNA polymerases and in genes frequently mutated in
CRC, and found an unexpectedly high effective mutation rate,
7.1 × 10−7. The curve of subclonal mutation accumulation as a
function of sequencing depth, using DNA obtained from 5 different
tumors, is in accord with a neutral model of tumor evolution. We
present a theoretical approach to model neutral evolution indepen-
dent of the infinite-sites assumption (which states that a particular
mutation arises only in one tumor cell at any given time). Our anal-
ysis indicates that the infinite-sites assumption is not applicable
once the number of tumor cells exceeds the reciprocal of the muta-
tion rate, a circumstance relevant to even the smallest clinically
diagnosable tumor. Our methods allow accurate estimation of
the total mutation burden in clinical cancers. Our results indicate
that no DNA locus is wild type in every malignant cell within a
tumor at the time of diagnosis (probability of all cells being wild
type, 10−308).

mathematical modeling | tumor evolution | drug resistance | duplex
sequencing | genetic instability

Accumulation of somatic mutations is a characteristic of can-
cer. Solid tumors contain numerous selected clonal driver

mutations, as well as unselected clonal passenger mutations (1).
Subclonal mutations—which we define operationally in this study
as those present in ≤10% of malignant cells—also contribute to
phenotypic and morphologic heterogeneity within a tumor (2),
and potentially to therapeutic resistance (3). We note by way of
definition that a driver mutation that is initially subclonal may
become clonal if it is able to increase its relative prevalence in the
tumor. If such a selective sweep occurs, it cannot be distinguished
from initial presence in the founder cell, and such cells may be
viewed as additional founder cells. The extent of subclonal mu-
tations in cancer has been difficult to quantify, as the high error
rate of next-generation sequencing precludes reliable detection of
mutations present in fewer than 5% of cells (4).
Here, we apply the highly accurate duplex sequencing (DS)

methodology to quantify the extent of subclonal mutations, each
present in less than 10% of the genomes, in colorectal cancers
(CRCs) and adjacent “normal” mucosa. The accuracy of DS
(<1 artifactual background mutation in 107) bases (5) is >10,000-
fold greater than routine next-generation sequencing, enabling

quantification of subclonal mutations at very high depth. Both
strands of single DNA molecules are sequenced, and mutations
are defined as those that are present in both strands of the same
molecule at the same position and are complementary (6). We
conducted ultradeep sequencing of 11 microsatellite instability
(MSI)-negative CRCs (T) and adjacent normal (N) tissues. We
assembled 2 gene libraries, a 10-kb library encoding replicative
DNA polymerase delta and epsilon active sites (5 T/N pairs), and a
13-kb library encoding genes frequently mutated in CRC (11 T/N
pairs). No clonal mutations were detected in the evolutionarily
conserved DNA polymerase genes, but clonal mutations were
plentiful within the second library in tumors as expected based on
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Cancers evolve many mutations. Clonal driver mutations are
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every DNA base is mutated in at least one cancer cell. In par-
ticular, any therapy resistance mutation would be present.
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The Cancer Genome Atlas (TCGA) data (TP53, 5/11; KRAS,
5/11; BRAF, 1/11; PIK3CA, 5/11; UMPS, 1/11) (7).

Results
The mean subclonal mutation frequency was 8.4 × 10−7 ± 6 ×
10−8 per nucleotide sequenced (n = 11) in the tumors and 9.2 ×
10−7 ± 1 × 10−7 in the “normal” colon. The mutational burden in
adjacent normal tissue is not statistically different from the un-
corrected mutational burden in the tumor (Fig. 1, Top), but when
the tumor mutational burden is corrected for the percentage of
normal tissue present, estimated with digital imaging analysis (SI
Appendix), tumors exhibit a 1.9-fold increase in the mutational
burden compared to normal tissue, which is statistically signifi-
cant (Fig. 1, Bottom). The presence of numerous subclonal mu-
tations in normal colon expands on the results of Martincorena
et al. (8, 9), who observed clonal mutations throughout normal
esophageal tissue. There are several possible explanations for this
phenomenon. First, it is difficult to compare the mutation
frequencies in normal colonic tissue and relate them to relative
mutation rates without knowing the corresponding proliferation
histories. In normal colon, stem cells divide unequally, one
daughter replacing the parental stem cell while the other differ-
entiates into the intestinal lumen; in tumors, each cell undergoes
symmetric divisions. Furthermore, it has been estimated that one-
half of the mutational burden in a tumor was acquired in cells
before birth of the founder due to the large number of cell divi-
sions over many years before the founder cell is formed, which
could also explain the observed results (10). Finally, with age,
more and more “normal” cells may simply acquire a mutator
mutation but still have an incomplete set of oncogenic driver
mutations, whereas malignant cells may have a complete set (11).
We measured the mutational spectrum of the 96 possible

triplets (consisting of the mutation and 3′ and 5′ bases flanking
each substitution) in CRCs, adjacent normal colon, and glio-
blastomas (CRC data in SI Appendix, Fig. S2). CRCs cluster
closely in triplet space, and the distribution does not differ sta-
tistically from normal colon. Cosine analysis indicates that the

landscape of triplets (12) is different in the highly conserved
polymerase sequences in glioblastomas than in CRCs (Fig. 2 and
SI Appendix) in accord with Hoang et al. (13), who found mu-
tational spectra similar between T and N within a single tumor
but different between different tumor types.
The contribution of selection in tumor evolution is still de-

bated. It is generally agreed that oncogenic driver mutations
conferring critical cancer phenotypes are often clonal and posi-
tively selected. Some models assume successive purifying selec-
tive sweeps associated with acquisition of additional drivers (14),
while others (11, 15) assume neutral evolution after malignant
transformation, where neutral evolution refers to the idea that
shortly after cellular transformation the malignant cell has ac-
quired an assortment of driver mutations, and mutations there-
after do not confer a further fitness advantage or disadvantage in
the absence of therapy. Thus, these further mutations are ran-
domly acquired, neither enriched nor purified away during sub-
sequent tumor evolution prior to therapy. The latter neutral
evolution models featured an early mutator mutation (11, 15, 16)
increasing the mutation rate and accelerating the acquisition of
driver mutations. In a subsequent “Big Bang model” (17), se-
lective sweeps also need not be invoked. Several experimental
studies at varying depths supported neutral evolution (13, 17,
18). Our work sequences more deeply and omits clonal muta-
tions, both driver and passenger, in the analysis. In this work, we
have operationally defined the subclonal space as ≤10% allele
frequency; it is these mutations that are evaluated for neutral
evolution.

Determination of Mutation Rate and Mutation Burden via Sequencing
the Same Sample at Different Duplex Depths.As it is not possible to
sequence every genome present in a tumor, rare mutations (i.e.,
mutations present in one cell or a small number of cells) are
infrequently sampled. Due to the branching nature of evolution,
the earliest mutational events near the trunk of the evolutionary
tree are scored in the majority of cells and can be detected at low
DS depth. As we increase DS depth, additional recent mutations
that are present in a smaller fraction of the cells are also de-
tected. As the number of nucleotides sequenced at a given ge-
nomic position is nearly always less than the number of cells in
the tumor, we are unlikely to detect evidence of recent muta-
tional events late in the tumor’s evolution. Thus, the full muta-
tion burden in the tumor cannot be directly determined, and the
estimate of mutation rates is based on an incomplete dataset.
We developed a method to estimate the mutation rate and the

full mutation burden in the tumor by comparing measurements
at several different DS depths. Herein and in SI Appendix, we
present the theoretical analysis for mutation rate estimation, and
then evaluate 5 colorectal tumors by DS at a depth of up to
20,000× and an accuracy of <10−7.
We define the following terms and concepts (SI Appendix,

Table S2): 1) Number of effective cell divisions: NE the net
number of times a single cell in the tumor produces a new living
daughter cell to become 2 living cells, both of which survive. This
is defined only for growing tissues like tumors. In nonmalignant
tissues, the total number of cells remains constant due to a
balance of cell birth and death rates (b and d, respectively). In a
tumor, b > d, and therefore the tumor grows over time. However,
as d ≠ 0, it takes more than one actual cell division to make an
effective cell division. That is, following any actual cell division,
the daughter or parent cell may die. In such a case, that cell
division does not count as an effective cell division, which refers
only to cell divisions that result in an increase in cell number by
1. This simple concept is convenient for analysis because, for any
tumor of N cells that grew from a single founder cell, the number
of effective cell divisions is, by definition, always N – 1, whereas
the actual number of cell divisions is greater than or equal to the
number of effective cell divisions, and cannot be determined due
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Fig. 1. Mutation frequencies in CRCs before and after correction for the
presence of normal cells. (Top) Mutation frequencies in tumor (uncorrected)
and paired normal tissues obtained at a distance 1 cm from the tumor
margin. Tumor and normal tissue are not significantly different by Wilcoxon
rank sum test, P = 0.84. Conservative, lower tumor mutation frequencies
from this figure are reported in the manuscript. (Bottom) Mutation fre-
quencies in tumor (corrected) and paired normal tissues. Tumor mutation
frequency corrected for admixture with normal tissue. Percent normal tissue
in tumor samples estimated with an automated image analysis system (SI
Appendix). Tumor and normal significantly different by Wilcoxon rank sum
test, P = 7.0 × 10−5.
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to the unknown history of the tumor. It is also important to dis-
tinguish cell divisions, which we have equated to the net number of
all cells that have divided, from cell generations or doublings, each
of which involves a very large number of individual cell divisions,
the more so later in the tumor’s history. 2) Relationship between
number of actual cell divisions (NA) and effective cell divisions
(NE): The rate of increase in a population due to a single cell (not
including further proliferation from its daughters) is simply b in
the absence of cell death, whereas the net rate of increase in a
population in the presence of cell death is b – d. The ratio of these
2 quantities determines the relationship between actual and ef-
fective cell divisions:

NA   =  

ZT

0

bðtÞNE

bðtÞ− dðtÞ dt. [1]

We have expressed this as a time integral since b and d may vary
over time. This relationship does not apply for adult tissues
without net growth, and would be mathematically undefined
when b = d.
Average values of b and d have been estimated using histologic

techniques as the ki-67 index and the caspase 3 index, respec-
tively. These rates are subject to both spatial and temporal
heterogeneity that characterize tumor evolution, and, therefore,
precise inference of the actual number of cell divisions has been
difficult to obtain.
Estimates of b for CRC have also been provided using labeled

nucleotides, leading to an overall estimate of 0.25/d on average
(19). Comparing this estimate to the actual rate of increase of
resistant subclones in CRC by noninvasive monitoring, an esti-
mate for d of 0.18/d on average is obtained (3). For example,
using Eq. 1, if b and d have the above values, the number of
actual cell divisions exceeds the number of effective cell divisions
by a factor of 3.57. Note: The number of actual cell divisions is
not utilized in the model described in this paper. 1) DS depth:
defined as number of duplex molecules sequenced at each nu-
cleotide position, symbolized by D. 2) Number of cells in the
tumor at the time of sampling: N. 3) Number of cells in the tu-
mor at an earlier timepoint t: n(t) < N. 4) Mutation rate per
nucleotide per effective cell division: kmut-eff. 5) Mutation rate
per nucleotide per actual cell division: kmut-actual. Note: This
parameter is not utilized in the model because it is not directly
measurable. 6) Fraction of apparently unmutated single-base loci
at each position: Fapparent-unmutated. The fraction of single-base
loci sequenced for which there is no unique subclonal mutation

detected when sequencing a tumor of N cells at depth D. 7)
Reference sequence for defining unique subclones: The consensus
clonal sequence of the normal in that individual is the reference
against which unique subclonal mutations are defined. Compared
to the host germline, the founder cell(s) harbors: 1) clonal mu-
tations that were selected during carcinogenesis, and 2) random
drift from the germline, which occurred during the life span of the
individual, during which the entire colonic epithelium was repo-
pulated on a weekly basis, leading to a variation among normal
colonic cells (10). By discarding clonal passenger and driver mu-
tations occurring in the tumor at greater than 10% allele fre-
quency in the analysis, the reference becomes in effect the founder
cells, which may be new founder cells or “founder cells” after
subsequent selective sweeps. Our analysis is independent of the
history of the tumor prior to the birth of the founder cell(s).
The goal of the analysis is to infer the mutational diversity of a

tumor from sequencing at a variety of depths, and to discuss the
consequences for therapy. The analysis does not use the tradi-
tional input and output parameters of actual number of cell di-
visions NA and mutation rate per base per actual cell division
kmut-actual, which can only be inferred based on assumptions that
are highly dependent on the unknown tumor history. Rather, it
uses the input parameter of the number of effective cell divisions
NE, which can be directly obtained from the tumor size and the
corresponding output parameter of mutation rate per effective
cell division kmut-eff. Bozic and Nowak (20) have previously used
tumor size as an approximation for the number of cell divisions,
as we have in this work. The other input parameters, DS depth
D, and fraction of apparent unmutated single-base loci (relative to
a tumor consensus reference) are also experimentally obtained.
We can use this analysis to characterize the mutational di-

versity of a tumor, including the likelihood of the presence of a
mutation at an arbitrarily selected site in one or more cells of a
tumor, and discuss the clinical consequences. A mathematical
model for optimizing targeted therapy while accounting for tu-
mor evolution, as parameterized by the net birth rate (birth rate
minus death rate) and the effective mutation rate has previously
been published. Simulations using this model demonstrate the
utility of this approach, which is similar to the approach de-
scribed herein (21). However, the model cannot provide a de-
finitive estimate of the tumor’s mutation rate per actual cell
division kmut-actual, nor can it compare such a value with a com-
parable parameter from normal tissue to evaluate the validity of
the mutator hypothesis (which states that tumors have a greater
mutation rate than normal tissue). Resolution of this question
requires determination of actual mutation rates, which in turn
requires knowledge of the mitotic history of both the tumor and
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Fig. 2. Plot of cosine similarities of mutation signatures, grouped by type of comparison. These results show that there is a significant difference between a
CRC tumor sample and a glioblastoma multiforme (GBM) sample. Detailed results of an ANOVA of these data are discussed in SI Appendix, Table S6.
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normal tissue. An illustration of the dependence of the inferred
actual mutation frequency on the growth pattern is provided in
SI Appendix. Furthermore, Eq. 1 is not designed to be informa-
tive for homeostatic tissues, where b = d.

Mathematical Approach. In order to model the fraction of ap-
parently unmutated single-base loci, we integrate over the entire
history of the tumor, determine the fraction of apparently
unmutated single-base loci for daughter cells born at different
times, and obtain the average fraction of apparently unmutated
single-base loci, weighted by the number of daughter cells born
at different times. For mutations detected at a given DS depth,
the fraction of apparently unmutated single-base loci is constant
[independent of n(t)], making the average simple to calculate. At
early time points, when there are few cells, it is less likely that a
mutation will arise because there are fewer cells dividing at that
time. However, if a mutation arises at this early time, it will be
present in a larger fraction of the cells in the final tumor, because
it is closer to the trunk of the evolutionary tree, and therefore will be
more likely to be detectable. These 2 factors (the lower likelihood of
a mutation at earlier times but greater likelihood of detecting a
mutation that does occur at an earlier time) exactly counterbalance
each other to give a constant number of expected detectable
mutations arising at any time. These considerations lead to the
following equation, which was used in our primary data analysis:

ln
�
Fapparent−unmutated

�
=−kmut−effD. [2]

The derivation of this equation is given in SI Appendix. Plotting
the natural logarithm of Fapparent-unmutated vs. D is thus expected
to lead to a straight line, with slope of −kmut-eff, which parallels
our data very accurately (SI Appendix, Fig. S1 A–E). The expres-
sion differs from related methods (22) due to the absence of the
infinite-sites assumption (23). In SI Appendix, we show that, at
sequencing depths below 1/kmut-eff, Eq. 2 predicts a linear rela-
tionship between number of unique subclonal mutations and se-
quencing depth, similar to other methods (22). Fig. 3 is plotted in
this manner due to the intuitive clarity of presentation. However,
at very high depth, this simple linear relationship breaks down and
greatly underestimates the total mutational burden of a tumor (see
Figs. 5–7). These points are shown mathematically in SI Appendix.
If we could sequence every single cell in the tumor, we could

determine the total mutational burden of the tumor. In Eq. 2, we
would substitute D = N. Raising e to the power of each side of
Eq. 2, with D = N, we obtain the following:

Fraction  of   single  base  loci  unmutated  in  the  entire  tumor

= e−kmut−effN .

[3]

If there are R single-base loci in the genome, mutation of which
can lead to drug resistance to a single drug, and there are K non–
cross-resistant drugs administered, we modify Eq. 3 to predict
the probability of no cross-resistance to all K therapies, due only
to mutation:

Pno    simultaneous    cross    resistance = e
−
�
R  kmut-eff

�K

N
. [4]

This equation was used to calculate the values in Table 1. A
detailed derivation and more results of these calculations are
given in SI Appendix.
In SI Appendix, the following additional topics are considered:

application of the method to the 5 individual CRC tumors se-
quenced at multiple depths, the relationship of this theoretical
work to earlier work with particular emphasis on the mutant
allele fraction as a function of sequencing depth, discussion of

assumptions and approximations of the model, illustration of the
dependence of actual mutation frequency on the growth pattern
(e.g., Gompertzian growth), evaluation of the likely conse-
quences for the estimate of tumor mutational burden and for the
mutator hypothesis, and simulations defining the sensitivity of
the method for detecting deviations from neutral evolution.
Because of the branching nature of tumor evolution, increas-

ingly rare private mutations are found in later, more numerous
branches. Thus, our ability to sequence more deeply with DS
gives us a window into evolution further forward in time from the
birth of the founder cell. In order to determine whether neutral
evolution continues at a constant high mutation rate at later time
points, we sequenced multiple independent samples from 5 tu-
mors to progressively increasing depths up to 20,000, using
capture probes consisting of oligonucleotides complementary to
exons of replicative DNA polymerases. Our mathematical anal-
ysis is similar but not identical to the approach Williams et al.
(22) devised to analyze the TCGA database. Both methods
support the neutral model, in which most mutations do not affect
fitness, and a linear relationship is predicted between the num-
ber of unique subclonal mutations and the sequencing depth up
to depths approaching the reciprocal of the effective mutation

A

B

Fig. 3. Simulated (A) and actual (B) curves for the number of nucleotide
sites uniquely mutated in the DNA polymerase library (10 kb) vs. DS depth.
(A) Simulations assume most subclonal mutations are neutral passenger
mutations (red line) or assume significant purifying selection (blue line).
Simulation methods and parameters are given in SI Appendix. Neutral
model: The curve for neutral mutations alone is predicted to be approxi-
mately linear for sequencing depths up to 100,000 and after that to ap-
proach saturation in an exponential fashion. A mathematical transformation
of the number of mutated sites, which is predicted to be exactly linear for all
sequencing depths, is given in SI Appendix. Selection model (blue line): This
curve is the sum of curves for 3 classes of sites (positively selected, neutral,
and negatively selected) exponentially approaching saturation of their re-
spective sites at different rates. Positively selected sites approach saturation
rapidly, while negatively selected sites approach saturation slowly, if at all.
The resulting simulation shows sharp curvature. The figure is only illustra-
tive; the curvature shown may not be detectable for weak selection (s < 0.2)
combined with low mutation rate, or for a small number of positively se-
lected sites (<1%). (B) Observed data superimposed on the selected and
neutral models from A. The observed data fit the latter neutral model with
correlation coefficients ranging from 0.953 to 0.999 for 5 tumors (shape-
coded) independently sequenced at multiple depths (SI Appendix, Table
S3 and Fig. S1). The plotted line is the optimal regression line through all of
the data points from the 5 tumors, less precise than individual regressions
for each tumor.
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rate (i.e., ∼1.5 million; see below); this is confirmed in Fig. 3 and
in SI Appendix, Fig. S1 A–E.
Purifying selection, as well as changes in growth dynamics or

mutation rates, could each result in deviations from linearity (SI
Appendix, text and Table S4). For example, exact simulation of a
selection model will in general not give a straight line, but a curve
with 3 phases, each with progressively decreasing absolute value
of the slope with increasing DS depth, resulting in curvature
[upward slope with downward curvature for the Williams et al.
(22) formulation; downward slope with upward curvature for our
approach]. The initial phase at low depth (high variant fractions)
is dominated by selected loci that accumulate mutations rapidly
in the majority of cells. Then a second phase follows representing
the neutral loci, which accumulate mutations more slowly and at
lower variant fractions, and thus become visible at higher depth.
Finally, a third phase representing small numbers of negatively
selected genes at still lower variant fractions may be observed.
We assume the approximation that mutations in different sites
are independent with respect to their effect on fitness and ad-
ditive. With this assumption, cells with or without a selected
mutation may appear in different cells with different genetic
contexts as the tumor evolves, but on average will be more fit
than the comparable population without the selected gene. If we
had modeled a continuous distribution of fitness, there would be
a continuous downward curvature rather than 3 phases. However,
the ability to observe all 3 phases, or indeed to observe curvature,
depends on the parameters and the sequencing depths chosen.
However, curvature was not observed (Fig. 3 and SI Appendix,

Fig. S1 A–E), indicating that within the limits of our sensitivity
these effects do not skew the average frequency and types of
single-base substitutions in the subclonal mutational landscapes.
We evaluated the sensitivity for ruling out selection by varying
the selection coefficient s, and the percentage of bases in the
genome subject to selection. A selection coefficient s means that
cell with that selected mutation will be more fit by a factor of 1 + s,
increasing in number by this factor relative to a cell with fitness 1
each effective cell division. For each set of sensitivity parame-
ters, we compared the average absolute fractional residual error
(i.e., absolute value of the experimental data minus that pre-
dicted by the model, all divided by the experimental data). If a
model had an average absolute fractional residual error above
the upper 95% confidence interval of the average absolute
fractional residual error of a competing model, it was considered
ruled out. Fig. 4 shows that while there was no statistically sig-
nificant difference between weak selection and neutral models,
selection models with s ≥ 0.23 are ruled out. Weak selection
models that fit the data must be paired with lower mutation
rates. Despite having more parameters for fitting, they generally
required y intercepts further from the theoretical value of zero
than their neutral counterparts. In addition to not being able to
rule out weak selection, we cannot rule out selection occurring
at ≤1% of base loci. Weak or infrequent selection approaches

neutral evolution in that the term neutral evolution is not meant
to be absolute. The results suggest that neutral evolution at a
high mutation rate (or weak selection at lower mutation rates if
present) continues as far forward in time as we can see, i.e., until
the tumor reaches 20,000 cells.
The slope of the lines plotted for individual tumors determine

a mutation rate per template nucleotide locus per effective cell
division, or “effective mutation rate” (Methods and SI Appendix),
in a manner similar but not identical to that of Williams et al. (22).
An effective cell division is defined by the addition of one new cell
to the tumor, and consists of multiple actual cell divisions
depending upon the differences between cell birth and death
rates. Thus the “actual mutation rate” will in general be lower
than the effective mutation rate. The observed effective mutation
rate may change without a change in the actual mutation rate if
the balance between birth and death rates changes during tumor
growth, but our conclusions below remain robust for different
growth patterns (SI Appendix). The number of effective cell divi-
sions is based on tumor size, in that an effective cell division adds
one net new cell to the tumor. The actual mutation rate cannot be
determined without knowledge of cellular birth and death rates
throughout the tumor’s history. Effective mutation rates can be
used to estimate total mutational burden of a tumor (below) and
to govern evolutionarily optimized therapy (21).
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Fig. 4. Sensitivity threshold for ruling out selection models. Average ab-
solute fractional residual curves for best fit neutral (red) and selection (blue)
models are plotted (solid lines) along with their 95% confidence limits
(dashed lines) as a function of the strength of selection s. Reference data
were 1 of the 5 fresh frozen CRC tumors that we sequenced at multiple
depths, plotted according to the approach in SI Appendix,Methods, with the
natural logarithm of the unmutated fraction of the capture set plotted
against depth. For the selection model, a1 was set at 0.015, indicating 1.5%
of loci were positively selected (97% were neutral and 1.5% negatively se-
lected). For each model, kmut-eff and the y intercept value (theoretically zero)
were varied in a search for the optimal fit. kmut-eff was constrained to
be ≥10−10. For each point in the data, absolute values of the residual as a
fraction of the data point itself were recorded. These values were averaged
across the data points for each model. For s > 0.23, the average absolute
fractional residual is greater than the upper 95% confidence limit of the
same statistic for the neutral model, suggesting that this strength of selec-
tion is ruled out. Strong drivers typically have s on the order of 1–4 (37). See
SI Appendix, Methods, for details of simulation.

Table 1. Probability of emergence of multiply resistant cells

No. of cells (N) No. resistant loci (R) Therapies (K) PNSCR

109 1 2 0.999
109 100 2 6.5 × 10−3

109 100 3 >0.999
1011 100 3 0.965
1012 1 2 0.604
1012 100 3 0.699

Probability PNSCR that no cell in a cancer of N total cells will be mutation-
ally resistant to all of K non–cross-resistant therapies, where in each case
there are R neutral single bases in the genome, mutation of which confers
resistance in selected scenarios. See SI Appendix, Table S5, for additional
scenarios.
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Among the 5 tumors sequenced at different depths, the av-
erage effective mutation rate is 7.1 × 10−7. This is substantially
higher than previously estimated for actual mutation rates in
normal tissues based on human population genetics and/or tissue
culture studies (∼10−10) (24). However, one cannot compare an
effective mutation rate to an actual one without knowledge of the
proliferation history, and thus cannot definitively state whether
this is indicative of a mutator phenotype.
Given a genome length of 3.1 × 109, multiplying by the ef-

fective mutation rate per nucleotide, we estimate 2,200 new
mutations per new daughter cell added to the tumor, or for
32 doublings between the founder cell and a recently born cell
when the tumor is large enough to be detected radiologically, a
genetic difference of ∼65,000 subclonal mutations. In inter-
preting this very high number, we note that the vast majority of
these mutations would be private mutations detectable only by
single-cell or single-molecule sequencing, including mutations in
noncoding DNA.

Discussion
Quantification of intratumoral genetic diversity and its rela-
tionship to therapy resistance began with the landmark 1965 use
of combination therapy to prevent emergence of resistance in
childhood leukemia (25). Numerous authors have concluded that
each tumor cell is genetically distinct (18, 22, 26–28). Both Loeb
et al. (29) and Sottoriva et al. (17) pointed out that a high mu-
tation rate facilitates drug resistance, and Sottoriva et al. (17)
made a similar point for neutral evolution. Preexisting mutations
have been linked to resistance in preclinical experimental models
(30), in single-cell analysis of subclones expanded in 3D culture
(28), and in clinical cases (31). Thus, preexisting resistance to
single agent therapy is likely in many cases.
We estimate the total burden of unique subclones in a tumor

from an analysis of the unique subclones detectable at different
depths by extrapolation of our data to single-cell depth in tumors
of different sizes (Methods and SI Appendix). At very high depth
(greater than the reciprocal of the effective mutation rate,
∼1.5 million), the Williams et al. (22) model and related sto-
chastic analyses (26, 32) substantially underestimate the tumor
diversity (Figs. 5–7, Methods, and SI Appendix). These ap-
proaches utilize the “infinite-sites assumption” (23) that any
mutation is unique when first formed. This assumption requires
that the number of cells in the dividing population is less than the
reciprocal of the effective mutation rate (i.e., 1 million cells di-
viding with an effective mutation rate of 10−10). In these cases,
there will be no mutations at the majority of sites in the pop-
ulation, and more than one cell with a mutation in the same site
is unlikely. We have, however, inferred a higher effective mu-
tation rate than previous authors with the exception of Williams
et al. (22). What will be the total tumor diversity if this high
mutation rate continues until the tumor reaches its minimum
radiologically diagnosable size of 109 cells or even beyond to the
terminal phase of the disease with many more cells present in the
total cancer? The infinite-sites assumption is no longer applica-
ble due to the large number of individual cell divisions per cell
generation, and at each nucleotide locus we expect multiple cells
will acquire the same mutation simultaneously (expected number
of new cells with the given mutation = mutation rate per nu-
cleotide locus per cell × number of cells dividing >> 1). Cheek
and Antal (33) have recently objected to the infinite-sites as-
sumption on identical grounds. A mathematical approach in-
dependent of the infinite-sites assumption, suitable for accurate
estimation of tumor mutation burden, is given in SI Appendix,
and the predictions are confirmed in each of the 5 tumors se-
quenced at multiple differing depths (Fig. 3 and SI Appendix, Fig.
S1 A–E). We note that stochastic models (26, 32) and de-
terministic models with (22) and without (this manuscript) the
infinite-sites assumption, despite their different mathematical

forms, give similar results over a wide range of typical experimental
conditions (Figs. 5 and 6; see mathematical proof in SI Appendix).
Stochastic models are more accurate than others at low cell
number, and models without the infinite-sites assumption are more
accurate for cancers large enough to be clinically diagnosed (Figs.
5 and 6 and SI Appendix). The difference in predicted diversity is
highly significant at diagnosis and increases dramatically as the
total cancer burden increases (Figs. 6 and 7).
In essence, the cancer gradually approaches and then enters a

new quantitative phase when it grows to a total number of cells
beyond the reciprocal of the effective mutation rate, acquiring
substantially greater diversity. The approach is governed by SI
Appendix, Eq. S16 and illustrated in Fig. 6. This equation is
derived in SI Appendix, and it is shown that at depths well below
the sequencing of all tumor cells (i.e., all experimental studies to
date), allele frequency will be inversely proportional to sequencing
depth, as claimed by Williams et al. (22). However, unlike the
Williams et al. (22) model, this will not continue indefinitely,
resulting in the allele frequency approaching zero. Rather, accord-
ing to SI Appendix, Eq. S16, the allele frequency will smoothly
approach a minimum of kmut-eff (Fig. 6). The underlying molecular
biology may not have changed, but based on altered probabilities
there are important clinical and biological considerations. Simu-
lation studies of tumor evolution often focus on 106 cells or less
due to computational limitations. Based on our results, we do not
believe these studies can be simply “scaled up” to larger tumors
without taking into account the progressive violation of the
infinite-sites assumption. Experimental small animal studies are
limited in tumor size due to ethics considerations. Patients, at
current levels of diagnostic sensitivity, are diagnosed in the un-
explored region of larger tumors, and move further into this re-
gion as they move through their clinical course. Under neutral
evolution, the result has limited or no dependence on whether the
cells are in one or numerous lesions. Subject to the assumptions

Stochastic model, 
infinite sites

Deterministic model, 
non−infinite sites

Deterministic model, 
infinite sites

1e0 1e1 1e2 1e3 1e4 1e5 1e6 1e7 1e8 1e9 1e10

N(t)

Fig. 5. Range of applicability of various models of intratumoral diversity vs.
the number of cells in the tumor N(t) when the mutation was acquired.
Sequencing to a depth D queries, on average, mutational events occurring
when N(t) = D. Stochastic models such as that of Bozic et al. (26, 32) are more
accurate than deterministic models at early times when the tumor is small.
Models without the infinite-sites assumption (this manuscript) are more
accurate than those with it (22, 26, 32) for larger tumor masses in which the
number of cell approaches or exceeds the reciprocal of the effective muta-
tion rate. The white parts of the bar represent zones where a method is not
the best method but is within 10% of the best method. The solid bars in-
dicate the method is the best method or within 1% of it. In the range of N(t) ∼
D corresponding to typical current experimental depths, all 3 methods are
within less than 1% of each other. Parameters are b = 0.25/d, d = 0.18/d, and
kmut-eff = 6.1 × 10−7.
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that neutral evolution and a high mutation rate continue, we
conclude from this analysis that every nucleotide locus is mutated
in one or more cells in a clinically detectable tumor. The chance
that every cell is “wild type” at any given neutral locus is 10−308.
This conclusion differs from the idea that all tumor cells are ge-
netically distinct (which could result from variation at a limited
number of sites) or that preexisting resistance is frequent or likely.
Our work suggests that preexisting resistance to single-agent
therapy is universal and inevitable.
[Note that, in this work, the reference sequence is the normal

consensus sequence for the given individual, meaning that “wild
type” refers to that sequence. Relative to a general human con-
sensus sequence, this tumor consensus sequence may contain
numerous passenger mutations as well as single-nucleotide poly-
morphisms (SNPs) unique to the host. We discard tumor muta-
tions occurring at allele frequency greater than 10%, and thus the
reference effectively includes clonal driver and passenger muta-
tions occurring in >10% of the tumor cells. The “founder cells”
may be original founder cells or may have arisen from selective
sweeps. Given that these founder passenger mutations and SNPs
will be passed on to most of the daughter cells derived from the
founder(s), these mutations will almost certainly be retained in
one or more tumor cells in the final tumor as well.]
Furthermore, we are able to calculate the likelihood of simul-

taneous resistance at diagnosis to multiple non–cross-resistant
therapies preexisting in a single cell based on mutational re-
sistance alone, and how this probability increases as the tumor
grows (Table 1 and SI Appendix, text and Table S5). The trend
toward greater likelihood of simultaneous resistance to combina-
tions as the tumor grows is in accord with Bozic et al. (32).
However, our estimates benefit from deeper sequencing at higher
accuracy as well as independence from the infinite-sites assump-
tion. Table 1 contains several rows, each representing a different
clinical scenario or presentation. The tumor burden and the
number of relevant non–cross-resistant therapies will certainly
vary between patients. The number of bases, mutation of which
may lead to resistance, is unknown and highly variable. Resistance
can be due to mutations anywhere in the pathway where the drug

acts, in parallel redundant pathways, or in feedback loops, and
also can affect protein coding regions, transcription factor binding
sites, microRNA, and so on. Often new resistance mechanisms still
remain to be discovered. A recent description of clinical resistance
mechanisms in BRAF directed melanoma therapy is illustrative
(34). The scenarios illustrate that the greater the tumor burden
and the greater the number of resistance mechanisms, the more
non–cross-resistant therapies would be required to make it likely
that no single cell will have simultaneous resistance. Optimal
therapy must not only consider preexisting resistance but also the
risk of new multiply resistant subclones emerging during tumor
growth (21, 35).
Our work has limitations (see SI Appendix for additional dis-

cussion). It assumes that the mutation frequency in the purified
gene fragments is representative of the whole genome. Muta-
tional hot spots were not evident within our capture set, which
was selected because it is tightly conserved in evolution.
The data do not rule out weak selection with a selection co-

efficient less than 0.23 (i.e., a 23% net growth advantage per cell
generation), nor can it rule out the presence of a very small
number of selected sites (<1%) (SI Appendix). This is in accord
with sensitivity limits reported by Williams et al. (22).
Weak selection by many “minidriver” genes is an alternative

theory of interest to many. Bozic et al. (36) have modeled the
selection coefficient based on evaluation of putative passenger
and driver mutations in astrocytic glioblastoma and pancreatic
adenocarcinoma sequences, and validated their conclusions by
predicting the kinetics of appearance and growth of polyps in
familial adenomatous polyposis in 2 of 3 datasets. They reached
the conclusion that, even for APC, s is very small: 0.004. How-
ever, the key equation in their analysis is Eq. 2, in which s ap-
pears in a ratio with the mutation rate. They then use a mutation
rate 3 orders of magnitude lower than what we have determined.
Using our mutation rate, their Eq. 2 would give a value of s of
nearly 4, which is in accord with the value of 2.76 more recently
measured by direct observation of colonic stem cell crypt evo-
lution using fluorescently labeled cells in genetically engineered
mice (37). Moreover, in our view, the modeling of polyp ap-
pearance kinetics does not account for host factors such as
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Fig. 6. Average mutant allele frequency (MAF) for a given mutation vs.
N(t), the number of cells at the time it is formed, for the stochastic model
with the infinite-sites assumption (26, 32) (blue), the deterministic model with
the infinite-sites assumption (22) (red), and without the infinite-sites assump-
tion (gold; this manuscript). The deterministic model with the infinite-sites
assumption leads to a reciprocal relationship between N(t) and the average
MAF and a straight line with a slope of −1 on a log–log plot. The deterministic
model without infinite sites has an asymptotic limit for the MAF of kmut-eff for
N(t) comparable to 1/kmut-eff and larger. Parameters are b = 0.25/d, d = 0.18/d,
and kmut-eff = 6.1 × 10−7.
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success or failure in establishing the tumor vasculature, or the
possible elimination of most nascent polyps by immune surveillance.
These and other factors may confound comparisons of tumor
initiation kinetics with clinical observations (11). Williams et al.
(38) have examined bulk sequencing data from multiple sources,
looking for deviations from neutral evolution in the curve of
variant allele frequency vs. total mutation burden (as a surrogate
for time). They have not detected evidence of a value of s below
0.2, which they also state as their limit of sensitivity. While we
believe neutral evolution is the most straightforward in-
terpretation of our data, weak selection also remains a possi-
bility, and the extent and biological significance of weak selection
remain unknown.
Our calculations are based on the use of the zero term of the

Poisson distribution given the mean expected number of muta-
tions. However, the scenario we are modeling has similarities to
the work of Luria and Delbrück (39) (L–D), who evaluated the
incidence of acquired mutation in bacterial cultures grown from
a single cell. A mutation that occurs early is considered a
“jackpot” in that it will be present in a large number of daughter
cells despite initially being only one mutational event. The
probability distribution function giving the probabilities of detect-
ing a particular number of mutations in an (L–D) experiment has
been, and continues to be, a subject of advanced mathematical
research (33, 40, 41). However, the probability of observing zero
mutations is agreed to correspond to the zero term of the Poisson
distribution in continuous models (39), or its related binomial
equivalent in stochastic models (41) if the experimental protocol is
free of certain biases that cause the mean to be underestimated in
(L–D) experiments. Specifically, in the original (L–D) experiment,
jackpot mutations that occur early on in the experiment are rare
events due to the low mutation frequency. Unless a very large
number of observations are made, the expectation value for these
jackpot mutations is a very small real number between 0 and 1.
Since the experiment can only read out whole numbers, the most
common readout is zero, leading to an underestimate of the av-
erage mutation rate (on rare occasions, the readout will be 1 or a
higher integer, leading to an overestimate). However, in our ex-
periment, we are observing 104 bases in parallel at a depth of up to
2 × 104 for a total of 2 × 108 observations. Luria and Delbrück (39)
state that the complex (L–D) distribution applies to a small
number of observations, and the number of observations must be
greater than the reciprocal of the apparent mutation rate to avoid
these complexities. Based on the apparent mutation rate we ob-
served, our number of observations exceeds this criterion 70-fold.
Luria and Delbrück (39) further point out that a hallmark of the
(L–D) distribution is a variance substantially exceeding the mean,
and in their paper the ratio of variance to mean ranged from 2 to
3 to over 600, whereas the Poisson has a variance equaling the
mean. They report a 5-fold overestimate of the mutation rate
under these conditions when estimating based on the zero term of
the Poisson distribution. In Table 2, we report that the variance/
mean ratio in our experimental data for observed mutations across
the 10,000 bases we have sequenced is close to 1 for all our ex-
perimental data points. This is not surprising given our large
number of observations. In addition, our mutation rate is esti-
mated using multiple time points and the slope between them,
rather than a single time point as in the L–D experiment. Since the
linear regression slope is influenced by the difference between
successive points, any jackpots at early time points may influence
the y intercept more than the slope, further mitigating any arti-
facts. Finally, we discard any mutations with a 10% or greater
allele fraction, minimizing jackpots.
Our major analyses in this paper, including the mutation rate

estimation, the estimation of the probability that no cell will be
mutated at a given site with respect to the founder cell reference,
and the estimation of the probability of resistance to multiple
cross-resistant therapies, rely only on the average and the zero

term of the Poisson distribution, which should be accurate given
the data in Table 2 and other considerations listed above. If the
mutation rate were slightly higher than we have estimated, it
would only strengthen the major qualitative conclusions of this
paper: that diversity of subclonal mutations is extensive and that
every site in the genome differs from the founder cell in at least
one tumor cell once the tumor is large enough to be clinically
diagnosed.
Our model neglects reversions, in contrast to the models of

Jukes and Cantor (42) and Kimura (43), both of which use the
infinite-sites assumption, and the more recent study by Cheek and
Antal (33), which, like ours, does not employ the infinite-sites
assumption. The Jukes and Cantor (42) and Kimura (43) mod-
els also differ from our model in that they describe an approach to
a steady state in a large fixed size population. When steady state is
achieved, the reversion of preexisting mutations exactly counter-
balances the formation of new mutations. The equilibrium state is
approached over millions of generations, on the order of the re-
ciprocal of the mutation rate. Under these conditions, a large
number of mutations are preexisting in a large population.
In contrast, in our case, we are interested in the divergence

from the reference sequence in a single founder cell. Since the
founder cell is the reference, it has no mutations by definition.
Thus, we cannot have a reversion at a site in a given cell without

first having a mutation. We have considered the Jukes and Cantor
(42) and Kimura (43) models, and while the mutation rate ob-
served in our work is high enough to violate the infinite-sites as-
sumption that mutations will not arise at the same base in more
than one cell in a large population [requires kmut ≥ 1/N(t)], it is not
high enough for a large number of mutated cells to revert [re-
quires k2mut ≥ 1/N(t) since it would have to be likely that the same
base in the same cell mutates and back mutates]. Moreover, a
second mutation at the same base has only 1 chance in 3 to revert
back to the reference sequence.
Looked at another way, a cell that has just had a mutational

event at a given site has ∼40 cell doublings before that single cell
has 1012 progeny, the largest total cancer cell burden we consider
in the paper. This is much fewer than the millions of generations
required to reach equilibrium in the Jukes and Cantor (42) and
Kimura (43) models. As the effective mutation rate is calibrated
to cell doublings, the expected fraction of the progeny of the
mutated cell reverting is at most 40× the effective mutation rate
or 3 × 10−5 (if the mutation arises very early in tumorigenesis).
This means that only a very small proportion of mutated cells will

Table 2. Mean number of mutations detected per nucleotide
locus and associated variance

No.
Mean
depth

Mean
mutations

per nucleotide

Variance in
mutations

per nucleotide
Variance/
mean

1 1,783.71 1.6449E-03 1.6422E-03 0.9984
19,453.23 1.4611E-02 1.8267E-02 1.2503

2 1,134.24 1.9355E-03 1.9318E-03 0.9981
21,986.85 1.8484E-02 3.4788E-02 1.8820

3 2,131.11 1.2575E-03 1.2559E-03 0.9987
20,897.13 1.2091E-02 1.4073E-02 1.1639

4 890.51 1.0647E-03 1.2571E-03 1.1808
11,902.35 1.7809E-02 2.8525E-02 1.6018

5 1,285.00 1.2581E-03 1.2565E-03 0.9987
16,433.63 9.5810E-03 1.6070E-02 1.6773

For low and high depth data points, left to right: the mean depth of
sequencing, the mean number of mutations detected per nucleotide aver-
aged across the DNA polymerase delta and epsilon capture set, the variance
associated with the mean number of nucleotides, and the variance/mean
ratio are given. The variance/mean ratio near 1 is characteristic of the Pois-
son distribution. Data for intermediate depths are similar.
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revert. Our system is far from equilibrium, and the correction to
our calculations due to reversions is expected to be very small.
We further assume that the effective mutation rate is a

population-weighted average of different subclones and the pop-
ulation weighting is stable, an expected consequence of neutral
evolution.
Our theoretical treatment does not consider spatial effects.

However, our experimental data use pooled DNA from 5 widely
separated locations. Sottoriva et al. (17) concluded from multi-
ple measurements that carcinomas are well mixed. Mixing may
not affect growth and diversity under neutral evolution.
Drug resistance calculations assume that neutral evolution and

a high mutation rate continue throughout a cancer’s lifetime. A
continued high mutation rate is supported by high effective
mutation frequencies in cell lines derived from mature cancers,
and by experiments showing mutators are stably selected in
mixed bacterial populations (44). Genetic studies find that only a
small minority of mutations are selected, consistent with neutral
evolution throughout (SI Appendix).
Drug resistance calculations are also limited to point muta-

tions and do not include other genetic mechanisms and non-
genetic resistance mechanisms, nor do they consider that hyperploidy
and copy number variation may provide additional sites for muta-
tion. These additional mechanisms further strengthen our conclu-
sion about the inevitability of preexisting resistance to single-agent
therapy, while potentially increasing the number of non–cross-
resistant agents necessary to reliably eliminate a cancer compared
to our estimate.
In summary, we have utilized DS to explore rare subclonal

mutations at very high depth and accuracy in fresh frozen MSI-
negative CRC and neighboring normal tissue, allowing us to see
further in time from tumor initiation than previously and re-
vealing profound subclonal diversity. Our experimental data
confirm a high mutation rate and neutral evolution (or weak
selection with a lower mutation rate) as far forward in time as we
can see. Using a theoretical method not confounded by the
infinite-sites assumption, we calculate the total tumor mutational
burden assuming the high mutation rate and neutral evolution
continue throughout tumor progression. We conclude, subject to
this assumption, that preexisting resistance in at least one cell to
any single therapeutic agent is inevitable in any colorectal tumor
large enough to be detected radiologically.

Methods
Specimens and DNA Isolation. All participating patients gave informed con-
sent, and all ethical guidelines for tissue acquisition from human participants
were followed. Guidelines for study procedures were provided by the Uni-

versity of Utah and the Cleveland Clinic. Following surgery, tumor tissue was
snap-frozen and stored at −80 °C. Complete clinical, surgical, and patho-
logical data were available for all cases. Pathology was classified according
to theWorld Health Organization classification (https://www.uicc.org/resources/
tnm/) of colorectal tumors. All tumors were grade II. Genomic DNA was
extracted using the Qiagen DNeasy Blood and Tissue Kit (69504). Histologic
annotation to confirm diagnosis and cellularity of the extracted tumor was
performed by frozen section microscopy of immediately adjacent tissue lo-
cated within 5 μm. Tumor cellularity was estimated microscopically on the
frozen section slides, yielding a mean adenocarcinoma cell percentage of
greater than 50%. MSI status was determined with BAT26 size analysis and
immunohistochemical staining of MLH1, MSH2, MSH6, and PMS2 (45).

All samples were deidentified prior to use in this study. Deidentified
samples were collected under an institutional review board on file with the
University of Utah, in compliance with US Code of Federal Regulations, 45
CFR Part 46. The content is solely the responsibility of the authors and does
not represent the official views of the National Institutes of Health.

DS. Sequencing library preparation was carried out as previously described
with minor modifications (6, 46, 47). See SI Appendix for further details,
including capture sets, adaptor sequences, capture probes, data processing,
and code availability.

Subsampling of Tumor Libraries. A tumor library may be computationally
subsampled in which all of the DNA molecules in the library are randomly
divided into sublibraries of desired sizes, never reusing the same DNA mol-
ecule (samplingwithout replacement). A single librarymay be used to generate
points along the linear curves here rather than performing separate experi-
ments. Although we have performed separate experiments in this study, we
have also shown for the future that subsampling gives valid results. See SI
Appendix, Fig. S1 A–E for details.

Evaluation of Signatures. We created signatures for 5 CRC tumors and asso-
ciated normal samples sequenced using the polymerase delta and epsilon
capture set, aswell as for 5 glioblastomamultiforme samples sequenced using
a capture set of glioblastoma multiforme, by comparing the number of
mutations of different types (C>A, C>G, C>T, T>A, T>G, T>C) at each dif-
ferent trinucleotide context (NCN or NTN). Detailed analytic methods are
presented in SI Appendix.

Data Availability. Data from this paper have been deposited in the NCBI
Sequence Read Archive under accession no. SRP135906 (48). GBM data have
been deposited in the NCBI database (BioProject PRJNA590549) (49).
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